Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize.

نویسندگان

  • Leila Feiz
  • Rosalind Williams-Carrier
  • Katia Wostrikoff
  • Susan Belcher
  • Alice Barkan
  • David B Stern
چکیده

Most life is ultimately sustained by photosynthesis and its rate-limiting carbon fixing enzyme, ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco). Although the structurally comparable cyanobacterial Rubisco is amenable to in vitro assembly, the higher plant enzyme has been refractory to such manipulation due to poor understanding of its assembly pathway. Here, we report the identification of a chloroplast protein required for Rubisco accumulation in maize (Zea mays), RUBISCO ACCUMULATION FACTOR1 (RAF1), which lacks any characterized functional domains. Maize lines lacking RAF1 due to Mutator transposon insertions are Rubisco deficient and seedling lethal. Analysis of transcripts and proteins showed that Rubisco large subunit synthesis in raf1 plants is not compromised; however, newly synthesized Rubisco large subunit appears in a high molecular weight form whose accumulation requires a specific chaperonin 60 isoform. Gel filtration analysis and blue native gels showed that endogenous and recombinant RAF1 are trimeric; however, following in vivo cross-linking, RAF1 copurifies with Rubisco large subunit, suggesting that they interact weakly or transiently. RAF1 is predominantly expressed in bundle sheath chloroplasts, consistent with a Rubisco accumulation function. Our results support the hypothesis that RAF1 acts during Rubisco assembly by releasing and/or sequestering the large subunit from chaperonins early in the assembly process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insight into ribulose 1,5-bis-phosphate carboxylase/oxygenase assembly in maize.

Widely heralded as the most important enzyme on Earth, ribulose 1,5-bis-phosphate carboxylase/oxygenase (Rubisco) catalyzes the reaction that draws inorganic carbon into the biosphere during the Calvin-Benson cycle. In higher plants, algae, andcyanobacteria,Rubiscooccursasahexadecamer consisting of eight large (50 kD) subunits and eight small (13 to 15 kD) subunits. Whereas the large subunits a...

متن کامل

Synthesis and assembly of large subunits into ribulose bisphosphate carboxylase/oxygenase in chloroplast extracts.

We have developed a new system for the in vitro synthesis of large subunits and their assembly into ribulose bisphosphate carboxylase oxygenase (Rubisco) holoenzyme in extracts of higher plant chloroplasts. This differs from previously described Rubisco assembly systems because the translation of the large subunits occurs in chloroplast extracts as opposed to isolated intact chloroplasts, and t...

متن کامل

Regulation of photosynthesis in nitrogen deficient wheat seedlings.

Nitrogen effects on the regulation of photosynthesis in wheat (Triticum aestivum L., cv Remia) seedlings were examined. Ribulose 1,5-bisphosphate carboxylase/oxygenase was rapidly extracted and tested for initial activity and for activity after incubation in presence of CO(2) and Mg(2+). Freeze clamped leaf segments were extracted for determinations of foliar steady state levels of ribulose 1,5...

متن کامل

Chimeric Arabidopsis thaliana ribulose-1,5-bisphosphate carboxylase/oxygenase containing a pea small subunit protein is compromised in carbamylation.

A cDNA of pea (Pisum sativum L.) RbcS 3A, encoding a small subunit protein (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), has been expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter, and the transcript and mature S protein were detected. Specific antibodies revealed two protein spots for the four Arabidopsis S and one additional spot ...

متن کامل

Nuclear-gene mutations suppress a defect in the expression of the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate Carboxylase/Oxygenase

The green alga Chlamydomonas reinhardtii mutant 76-5EN lacks photosynthesis because of a nuclear-gene mutation that specifically inhibits expression of the chloroplast gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Photosynthesis-competent revertants were selected from mutant 76-5EN to explore the possibility of increasing Rubisco expr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 24 8  شماره 

صفحات  -

تاریخ انتشار 2012